High-Memory Masked Convolutional Codes for
Post-Quantum Cryptography

Meir Ariel

Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
meirariel@tauex.tau.ac.il

Abstract. This paper introduces a novel post-quantum encryption scheme
based on high-memory masked convolutional codes, offering flexible and
robust security compared to conventional code-based methods that rely
on block codes with fixed parameters and limited error correction. Our
approach supports arbitrary plaintext lengths and adapts to diverse code
families with varying complexity and security levels. The scheme scales
efficiently with linear decryption complexity, maintaining consistent com-
putational costs regardless of plaintext size. Security is strengthened
through the high-rate injection of random errors, with additional noise
introduced via polynomial division. Semi-invertible transformations fur-
ther enhance cryptographic strength by generating dense, random-like
matrices. Our method significantly increases cryptanalytic resistance,
surpassing the security of ‘Classic McEliece’ by factors over 2'°°. More-
over, integrating the Viterbi algorithm supports efficient hardware imple-
mentation, making the scheme practical for real-world quantum-resistant
encryption.

Keywords: Code-based cryptography - Post-quantum cryptography -
Convolutional codes.

1 Introduction

Code-based cryptography, introduced by Robert McEliece [1] in 1978, employs
binary Goppa codes to build a public key encryption scheme. The core concept
disguises an error-correcting code using invertible linear transformations. The
sender deliberately introduces errors into the ciphertext (i.e., the codeword),
making decryption challenging for attackers while allowing the recipient, who
possesses the private key, to correct the errors and retrieve the plaintext.

Since its inception, numerous modifications to the McEliece cryptosystem
have emerged, mostly using different codes. However, most have failed to main-
tain comparable security [2-3]. Consequently, Classic McEliece reached Round 4
of the NIST standardization process for Post-Quantum Cryptography (PQC) [4]
but was not selected for final adoption. Despite its strong theoretical basis, Clas-
sic McEliece has practical limitations, including inflexible code selection with
limited error correction capabilities (essentially the (N, K t) = (1024,524,50)

2 Meir Ariel

and (4096, 3556, 45) Goppa codes, where K x N are the generator matrix dimen-
sions and ¢ is the error correction capacity). These constraints limit adaptability
to varying security requirements.

Our work introduces a novel PQC approach using high-memory masked con-
volutional codes, offering several advantages over traditional code-based cryp-
tosystems:

Diverse Code Selection: A wide range of convolutional codes can form the
public and private keys, allowing customization to meet specific performance
and security needs.

Stronger Public Key Security: Our method’s high-density generating matrix
with a random-like structure significantly improves security against cryptanal-
ysis compared to the low-density matrices of other code-based systems [5]. The
flexibility to select convolutional codes with strong error-correcting capabilities
enables the introduction of a higher (but unknown) number of random errors,
boosting cryptanalysis resistance by factors exceeding 2'°°, depending on key
length, compared to Classic McEliece.

Scalable Key Length and Decoding Complexity: Unlike block codes with
fixed parameters, our scheme supports plaintexts of arbitrary length, meeting
diverse security needs. The recipient’s decoding complexity scales linearly with
key length.

Efficient Hardware Implementation: The decoding process utilizes the Viterbi
algorithm, based on directed graph methods, facilitating efficient and straight-
forward hardware implementation.

The paper is structured as follows: Section 2 describes the construction of public
and private keys, forming our cryptographic framework’s core. Section 3 covers
the sender’s encryption process, while Section 4 details the recipient’s decryption
method. Section 5 examines potential eavesdropping attacks and their impact.
Section 6 discusses the rationale behind our polynomial selection strategy, cru-
cial for security. Section 7 provides a worked example demonstrating practical
implementation. Finally, Section 8 analyzes resistance to cryptanalysis and com-
plexity metrics, highlighting security benefits over traditional block-code-based
systems, and Section 9 concludes with key findings.

2 Public and Private Key Construction

In this paper, we denote binary vectors using bold letters (e.g., a,b), while
their corresponding polynomial representations are written as a(x),b(z). The
notations @ and a(x) are used interchangeably depending on the context. We
follow standard conventions from error-correcting code theory: m denotes an
information sequence, ¢ and d represent codewords (from different codes), s
denotes a syndrome, and r represents a CRC polynomial. Sets of binary vectors
are denoted using calligraphic letters, such as D and L. Polynomial generator
matrices associated with convolutional codes are denoted by uppercase letters

High-Memory Masked Convolutional Codes for Post-Quantum Cryptography 3

(e.g., A(z), B(z)), with their corresponding scalar representations written as A
and B.
Given n vectors:

v = (’Uo,”Ul,UQ,...),U = (uO,Ul,UQ,...),'LU = (U}o,wl,U)Q,...),...

the interleaving operation, denoted w A v A w,... produces a new vector by
alternating the elements of the input vectors:

(VAuAw...)= (vg,ug,Wo,...01,U,W1,. ..V, U2, Wa,...) (1)

To Deinterleave an interleaved vector and extract one of its constituent compo-
nents, we define the following operation:

(VAuAw...); (2)

This operation extracts the elements located at positions é,i + n,i + 2n,...
Specifically (v AuAw...)g =v.
Denote by p;(x) a binary polynomial of memory up to p

P
pi(z) = Zajzj, where a; € Fy (3)
=0

A Convolutional Code (CC) is defined by a set of n constituent polynomials,
customarily structured into the form of a polynomial generator matrix, denoted
as

Gp(x) = [po(2), p1(2), ..., Pn-1(2)] (4)

The matrix G p(x) determines both the rate and the error-correction capability of
the CC, which is typically characterized by its free distance, dfyee. The parameter
p determines the number of states, 27, in the trellis diagram—a directed graph
representing the code structure—and thus influences the complexity of decoding
using the Viterbi algorithm. For simplicity, we consider good CCs of rate 1/n,
although the construction presented herein is applicable to any CC, including
punctured codes. The matrix Gp(z) has a scalar representation G p given by:

gogig2... gp 0 00...
OgOQl---Qp—l gp 00
Gpr=100gy...9p 29, 19,0... (5)

where g; is the 1 x n matrix of coefficients of 2 (in the general case g; is a
k x n scalar matrix). For example, for Gp(x) = [1 + 2%, 1 + = + 2] we have
go = [11],g1 = [01],g2 = [11] and 0O = [00]. To each polynomial p;(x) we
associate a high-memory polynomial g;(z) with degree up to g,

q
gi(x) =) bja’!, where b; €F, (6)
j=0

4 Meir Ariel

The set of these n high-memory polynomials forms the polynomial matrix:

Gq(r) = [qo(x),q1(z), ..., qn_1(x)] (7)

The proposed algorithm imposes no restriction on the choice of Gp(z) and
G¢(z), and their polynomials may be reducible or irreducible. However, in prac-
tice the degrees p and g are chosen such that p+¢ > 200 and p < ¢q. Furthermore,
the selection of Gg(x) significantly affects the propagation of the error during
decryption (as discussed in Section 6), which requires an appropriate choice to
maintain a tolerable error rate in the decoder. The high-memory polynomial
generator matrix G pg(x) is defined as:

Gpo(7) = [po(?)qo(z), p1(2)q1 (), . . ., Pr—1(2)gn—1(7)] (8)

A corresponding finite-dimensional high-memory scalar generator matrix is given
by

go g1 92 --- Gptq 0 0
0gogi .. - Gp+g—1 Gp+q O 0

Gp = 0 0go...9p+q—29p+q-19p+q O e 0 9)
000... go g1 -+ Gptq—2 Ipta-1 Gpta

The number K of rows of G pg and the corresponding number of columns, given
by N = n(K + p+ q), can be determined by the owner of the key. Multiplying
each polynomial of Gp(x) by a high-memory polynomial substantially increases
the run-length of each row in Gpg, i.e., the length of a sequence within the
row that begins and ends with “1” compared to Gp. When employed for error
correction, the K x N matrix Gpg corresponds to a CC with memory length
p + g, that can be described using a trellis diagram comprising N/n segments
and up to 2P*¢ states. A conventional trellis diagram starts from a single state
and expands to 2774 states over p + ¢ segments. Additionally, p + g zeroes need
be appended at end of the information sequence to drive the trellis to a single
state. In principle, a Viterbi decoder can be used for maximum-likelihood hard-
decision decoding (based on a Hamming distance metric) of the CC. However,
this approach becomes impractical for large values of 2P,

Since G pg has finite dimensions, the corresponding CC exhibits block code
properties, defined by a generator matrix with a structured diagonal pattern.
Each row is obtained by a right shift of n bits relative to the previous row.
Although the code description is intricate, permuting the columns of G'pg does
not obscure its structure, as the position of zero sequences in each column still
reveal discernible patterns.

To obfuscate G'pg, disrupting its diagonal structure while maximizing the
run length, we introduce a K x N masking matrix G, where each row is ran-
domly selected from a predefined set £ of | random binary vectors of length
N. Notably, the set £ can be constructed from the same n-tuple of Hamming
weight approximately n/2, repeated N/n times. This structured construction is
primarily chosen to simplify notation and clarify the decryption process, without

High-Memory Masked Convolutional Codes for Post-Quantum Cryptography 5

significantly compromising resistance to cryptanalysis. Furthermore, it maintains
the same computational complexity as using fully random vectors. For example,
when n = 2, there are only two such vectors:

£ ={(101010...10),(010101...01)} (10)
For n = 4, the set £ could be taken as:

£ = {(11001100. .. 1100), (10101010 . .. 1010), (10011001 . .. 1001),

11

(01100110...0110), (01010101 ...0101), (00110011 ...0011)} (11)
The masked generator matrix is then constructed as Gpg + G, where addition
is performed over Fy. Finally, the encryption matrix, or public key, is obtained
by applying row and column transformations:

G =S8(Gpg +GR (12)

where S is a random non-singular K X K binary matrix used to hide the encod-
ing—that is correspondence between plaintexts (information words) and cipher-
texts (codewords). The matrix R is a random N x N permutation matrix. We
refer to the code described by G, a high-memory masked Convolutional Code
(MCC).The transformation from Gp to G involves several steps, some reversible
and others semi-reversible, ultimately producing a fully dense, random-like ma-
trix structure.

At the decoder, in addition to applying the inverse permutation, the effect
of the masking matrix G must be reversed. However, this masking operation
is not fully reversible. Although the recipient (the owner of the public key)
knows the exact value of G, the plaintext remains unknown. Consequently, the
specific linear combination of the rows of G added to the ciphertext by the sender
cannot be unambiguously determined by the recipient’s decoder. The approach
to addressing this challenge is explained in Section 4. Moreover, the masking
introduced by the high-memory polynomials must also be accounted for prior to
decoding. A trellis decoder with feasible complexity can operate only on G p and
not on its high-memory variant G'pg. Fully inverting the multiplication by the
high-memory polynomials is impractical in the presence of errors and may even
result in error propagation at the decoder, increasing the likelihood of decryption
failure for the recipient. However, this additional error propagation also raises
the complexity of any potential attack. An appropriate choice of Gg(z) can help
moderate this error propagation.

The final step in constructing the public key is to define an error-detection
code, such as a cyclic redundancy check (CRC), determined by a polynomial
r(x) of degree r. This additional layer of encoding, applied to the plaintext,
allows for the detection of possible decoding failures at the recipient’s end. This
step is necessary because, unlike block codes, successful decoding of a CC is not
guaranteed, even when the number of errors is known. We are now ready to
define the public key as:

{G,e,r} (13)

6 Meir Ariel

and the private key as:

{S,R, GP(ZC),GQ(I),G} (14)

3 Encryption by Sender

Assume that the sender possesses the public key. The following steps are per-
formed by the sender to generate the ciphertext:

Stepl: Generation of Plaintext
A random plaintext m of length K — r bits is generated. Its polynomial repre-
sentation is denoted by m(z).

Step 2: Appending CRC

To append r CRC bits to m, the following procedure is used: multiply m(x) by
a” (effectively shifting it); divide z"m(x) by the polynomial r(z) and compute
the remainder; append the remainder to m to form a binary vector of length K,
denoted as m,..

Step 3: Codeword Generation
The codeword c of length N is calculated as:

c=m,G. (15)

Step 4: Error Introduction
Random errors are introduced to ¢ by flipping each bit with probability e. The
actual number of errors injected by the sender is unknown. Denote the resulting
ciphertext as:

cc=c+e (16)
where e is the random error vector generated by the sender. Due to polynomial
division at the decoder, the effective error weight may increase further, con-
tributing to additional obfuscation.

Step 5: Transmission
The ciphertext c. is then transmitted by the sender to the recipient.

Typically, e will be chosen such that the Hamming weight of e, denoted wt(e),
is sufficiently large to significantly increase resistance to attacks. Since e is ran-
domly generated, it may contain more than eN errors or clusters of errors that
could cause a decoding failure. However, thanks to the superior error correction
capabilities of the CC defined by Gp, K and N, the probability of decoding
failure remains very low even for relatively large values of e. In a practical sys-
tem, any (rare) decoding failures will be detected by the CRC, enabling the
recipient either to select the next most likely candidate plaintext or to request
a retransmission.

4 Decryption by the Recipient

The recipient possesses the public and private keys along with the received ci-
phertext, i.e., _
{S,R,GP(ZC),GQ(I),G,G,e,T,Ce} (17)

High-Memory Masked Convolutional Codes for Post-Quantum Cryptography 7

The following steps are performed by the recipient to decrypt the ciphertext:

Step 1: Inverse Permutation
Apply the inverse permutation to ¢, to obtain é. (Note that if R is a permutation
matrix, then R~! = RT). Thus,

é=c.R" (18)
Since e is a random error vector with an unknown Hamming weight,
eRT = ¢,RT — c¢RT (19)
is simply another random error vector with the same weight, i.e.,
wt(eRT) = wt(e) (20)

Step 2: unmasking

Reverse the masking introduced by the summation of G and G pQ- Denote by
LS(L) the linear span of the set £. Since £ contains [vectors, we have LS(£) < 2!.
The vector ¢ can be expressed as:

é=m,SGpgy +m,SG =m,SGpg +1;, with I, € LS(L) (21)

However, the value of I; is unknown to the recipient and may be any member of
LS(L). Therefore, decoding must be attempted for all possible candidates in the
set M of unmasked vectors:

M=1{e—1;|l; e LS(L)} (22)

For example, if the CC has rate 1/4 (i.e., n = 4) and the set £ is chosen as in
Equation (11), then

LS(£) = {(0000. . .0000), (1000 .1000), (0100...0100),...,(1111...1111)}
(23)
so that |LS(L)| = 16. Consequently, decoding must be applied in parallel to all
16 members of M.

Step 3: Inverting the High-Memory Polynomial Multiplication

The next step involves reversing the multiplication by the high-memory poly-
nomials G¢(z). Using polynomial representations, each member of M can be
regarded as the result of interleaving the following n polynomials, each of length
N/n:

(é_lz‘)o/\(&_li)l /\'H/\(é_li)n—l (24)
where the elements of (¢ —I;); appear at the jth, (n + j)th, (2n + j)th,
and (% -1+ j)th positions of the interleaved vector & — l;. Therefore, each

such polynomial, denoted (é(x) — l;(x));, shall be divided by the corresponding
polynomial g;(x) to obtain a quotient polynomial, denoted by (d;(z));. The
value of (d;(x)); naturally depends on the value of I;(z). For simplicity, assume
that £ was selected as in Equation (10). Under this condition, each polynomial

8 Meir Ariel

(é(z) — l;(x)), arises from masking with either an all-zero masking polynomial
0(z), where l;(z) = 0(x) or an all-one masking polynomial 1(x), where l;(x) =
1(x). This results with two possible quotient values. When I;(z) = 0(x)

(¢(z) — 0(z));
q:()

T

(do(z)); = (25)
When 1;(x) = 1(z)

_ (e(x) — 1(2));

At this stage of decryption, the recipient cannot determine which quotient,
(do(z)); or (di(z));, is the correct one for index j. Furthermore, since (é(x) —
l;(x)); may contain errors, the division might yield non-zero remainders. These
remainders can either be ignored or be detected and subtracted if g;(z) is care-
fully chosen to function as an error-detecting code. When ignored, we assume
that errors left in the quotient will be corrected by the Viterbi decoder in Step
5 below.

Step 4: Quotient Interleaving
The quotients are re-interleaved to form a vector d;:

(26)

d; = (di)oA = (di)1 A ... (27)

All candidates need be considered. In the general case, there are no more than
2! variants in the set of interleaved quotients, denoted as

l_
D= {di 12:01 (28)

Step 5: Parallel Viterbi Decoding

We now aim to determine m,., the most likely value of m,., (i.e., the plaintext
with the appended CRC), by applying Viterbi decoding to all possible members
of the set D. Since D contains 2! candidate vectors, these can be decoded in
parallel for improved efficiency. Notably, there exists a key distinction among
the 2/ members of D. One specific variant, d;, will be decoded such that the
most likely codeword is found at a Hamming distance of approximately eN + «
from d;, where a represents the number of additional errors introduced by the
polynomial division process. The value of o can be estimated by simulations,
as described in Section 6. For all other candidate vectors in D the most likely
decoded codeword will typically exhibit a significantly larger Hamming distance
than eN + «. This distinction arises because subtracting an incorrect masking
vector from € effectively introduces a substantial number of errors into d;. The
most likely codeword d is determined by

d=d; —é (29)

where é is the error vector with the minimum Hamming weight among the
outcomes of all 2! parallel Viterbi decoders. The index i corresponds to the
decoder that processes the correct d;. The same Viterbi decoder also reveals

High-Memory Masked Convolutional Codes for Post-Quantum Cryptography 9

m,.S, the transformed plaintext with appended CRC that generated d.

Step 6: Plaintext Recovery
To recover the original plaintext, we invert the transformation induced by the
matrix S:

m, =m,SS~! (30)

Next, the remainder obtained from dividing m,.(z) by r(z) must be computed.
If this remainder is zero, we declare that

m, = m, (31)

and recover the plaintext m by discarding the r CRC bits from m,.. If the
remainder is non-zero, the selected codeword dis rejected, and the process con-
tinues iteratively with the next most likely candidate. This process is repeated
until a valid plaintext is identified or until all candidates are exhausted. If no
valid plaintext is found, a retransmission of another ciphertext is requested.

We remark that for a CC with memory length p, the information sequence
is padded with p zero bits at the end to force the trellis to converge to a single
termination state. Consequently, to obtain the most likely plaintext, these ap-
pended zeroes must also be discarded from the recovered sequence. This ensures
that the final recovered message accurately represents the original plaintext. The
encryption and decryption algorithms are illustrated in the block diagram of Fig.
1.

5 Eavesdropper Attack

An eavesdropper has access to the public key G and the intercepted cipher-
text c.. However, since ¢, contains errors, the eavesdropper cannot employ G 1
to recover m. Instead, the adversary would need to perform an impractically
large number of decryption iterations—each corresponding to a possible error
vector—or attempt to reconstruct G'pg by attacking the random-like structure
of G. Such an attack must overcome multiple layers of obfuscation, including a
random permutation of the columns of GG, a random selection of a K x K non-
singular binary matrix, and the substantial masking introduced by the product
SGR. Moreover, knowing G po () does not necessarily reveal G p(z), since the
high-memory products p;(z)g;(z) can be chosen to have multiple factorizations,
adding yet another layer of complexity.

Attack from a Known Convolutional Code: Even if the adversary pos-
sesses complete knowledge of the CC—that is, if they know the matrix Gp(x)—
they would still face significant obstacles in decrypting the ciphertext. Since
the Viterbi decoder requires the appropriately transformed received word as
input, the adversary cannot simply apply the trellis corresponding to G p(x)
to the intercepted cyphertext. Instead, they must first disentangle the masked
ciphertext’s structure. To achieve this, the attacker must identify the inverse per-
mutation applied to the received ciphertext and recover the quotients obtained

10 Meir Ariel

Encryption Error rate e
Generate a m Compute CRC and m; Encrypt plaintext + CRC c Inject errors

random plaintext > i d > o —
append to plaintext o= m,G:m,S(GPQ - G)R c,=cte

Ciphertext transmission

Decryption
(dy)o (€—=1Lo)o
: Divide Deinterleave
(dz'—1)e by g, 2 unmasked -1,
lntet.rleave < @& 1) s vector
quotients to Generate |
nvert
generate unmasked ermutation
candidate set candidates | & |”
of ciphertexts 51 &=c,R"
Deinterleave | € — I,1_, =y

L. (o)1 unmasked |4

r : Divide vector

(d2171)n_1 by q,,_1 ’ (E=Lagley

dyy| -] do Discard d from candidate set
and repeat until a valid 7,
is found, or reject all
Y
Viterbi decoder 0 Select d that | __ N
WS 1| ™ | pivid CRC N\ _Yes | accept
i minimizes &, —p.| § vide . i
i d obtai by r(x) ™\ verified plaintext
dnEZODEalr Remainder_ *
~——| Viterbi decoder 2' — 1 m,§

H

Fig. 1. Encryption and Decryption Block Diagram.

by polynomial division with error propagation. Each of these steps introduces
substantial complexity. In essence, an attack from this "bottom-up" perspective
must still overcome significant obfuscation, making the system highly resistant
to both direct and indirect forms of cryptanalysis.

6 Polynomial Selection

The decryption algorithm involves polynomial divisions that may cause error
propagation; a single error in the polynomials (é(z) — ;(x)); can lead to mul-
tiple errors in the quotient. To reduce this risk, the polynomial matrix Gp(x)
is selected to ensure that the corresponding CC has strong error-correction ca-
pabilities (e.g., free distance d .. > 20), outperforming Goppa codes or similar
linear block codes of comparable size. This results in rare decoding failures, even
at relatively high error rates e (a larger e also implies improved security).

High-Memory Masked Convolutional Codes for Post-Quantum Cryptography 11

To further limit error propagation, the polynomials Gg(x) should be chosen
to minimize the spread of isolated errors in (é(x)—1;(x));, confining them to just
a few errors in the quotient. Given an error rate e, simulations can test Gg(z) by
measuring the number of quotient errors for various random error vectors with
the same e, allowing for informed selection. Let e; be a random error vector of
length N/n with error rate e. The total number of additional errors introduced
by polynomial division, denoted «, is given by:

n—1

= Z[wt<f,—j> — wi(e;)] (32)

J=0

For the trivial choice g;(z) = z¥ (with y < ¢), division by g;(z) avoids error
propagation. A practical way to limit the spread of isolated errors during polyno-
mial division is to select g; as a sparse polynomial, increasing the gaps between
the exponents of its nonzero terms. An effective choice is a two-term polynomial
that extends the run-length of each row while minimizing error spread:

gj(x)=1+2z (33)

Increasing the number of nonzero elements in g;(x) can dramatically amplify
the difference:

wt(j—p — wi(e;) (34)

Thus, polynomials of G (x) should be chosen to ensure the estimated error rate:

eN + «a
N

(35)

remains within the CC’s decoding capacity.

7 Worked Example

Define the following CC, Gp(x) = [po(z),p1(z)] = [1 + 22,1 + 2 + 2?]. Suppose
that a randomly selected plaintext of length 6 is given by m = [111001], in
polynomial form m(z) = 1+ 2z +22+2°. In this example we skip the trivial step
of CRC construction, assuming it is already contained within m(z). A codeword
d(x) of the CC is obtained by either interleaving m(z)po(z) with m(z)p; () or
simply by employing a scalar generator matrix with 6 rows (corresponding to
the length of m) constructed according to Equation (5)

1101110000000000
0011011100000000
0000110111000000
0000001101110000
0000000011011100
0000000000110111

12 Meir Ariel

The codeword d in vector form is given by

d = mGp = [111001]Gp = [1110011011110111]
Next, choosing the polynomial matrix Gg = [1 + z7,2"], we obtain the corre-
sponding high-memory generator matrix. Gpg(z) = [pogo,p1q1] = [1 + 2% +
27+ 2%, 27 + 28 + 2). Using Gpg(x), we construct the high-memory scalar gen-
erator matrix G pg as in Equation (9) with: go = [10], g1 = [00], g2 = [10], g3 =
[00], g4 = [00], g5 = [00],gs = [00],g7 = [11],gs = [01],g9 = [11],0 = [00]. The
resulting matrix is:

9

100010000000001101110000000000
001000100000000011011100000000
000010001000000000110111000000
000000100010000000001101110000
000000001000100000000011011100
0oo0o00000010001000000000110111

Note that the run-length of each row has increased from 6 to 20. Construct G by
randomly choosing its rows from the set £ = {(101010...01),(010101...01)}
(or any other set of [random vectors of length 30):

[10101010101010101010101010101 0]
010101010101010101010101010101
101010101010101010101010101010
010101010101010101010101010101
010101010101010101010101010101
1101010101010101010101010101010]

)
I

Now sum G and G pq to obtain

001000101010100111011010101010
011101110101010110001001010101
101000100010101010011101101010
010101110111010101011000100101
010101011101110101010110001001
101010101000100010101010011101

GPQ—FGZ

which is now a high-density matrix with nearly half of the entries being "1".
Multiplying Gpg + G on the left by the following non-singular matrix S:

100100
010001
001000
001110
000010
001011

High-Memory Masked Convolutional Codes for Post-Quantum Cryptography 13

we have
011101011101110010000010001111
110111011101110100100011001000
~ 101 1 1010101 1110110101
S(Gpo+ @) = 010001000101010100 0 01010

101000001000001010010011000110
010101011101110101010110001001
010111010111111101100001111110

Apply to S(Gpg + G’) the following column permutation 7, defined by the bi-
jection function

ﬂ':(142591830821110295263112328152712206174271624132219)
|—>(123456789101112131415161718192021222324252627282930)

This permutation can also be performed by multiplying S(Gpg +G) on the right
by an equivalent 30 x 30 permutation matrix R

101011001100101101010111100100
101001011010001001010101111101
010000110100110010101010101110
001000010100101110001010001000
101111001000001001011101110110
110101001111010111010101111101

S(Gpo+G)R=

The codeword ¢ of the MCC corresponding to GG is given by
¢ =mG = [1110001]G = [100111101101000001111101001010]
If we assume a randomly generated error vector e with three errors:
e = [000100000000000010100000000000]
then the received vector is:
¢c. =c+e=[100011101101000011011101001010]

Decryption

Stepl: Inverse Permutation:
Apply the inverse permutation 7~ on the bits of c.:

ﬂ'_l:(218132411221963914202811726234302172915272122516105)
»—>(123456789101112131415161718192021222324252627282930)

This operation can also be described by multiplying ¢, on the right by an equiv-
alent 30 x 30 permutation matrix R~

é=c.R™!' =[010101010101011000011101010011]

14 Meir Ariel

Step2: Unmasking
To unmask ¢, we first need to deinterleave it to its polynomial constitutes, then
compute the four possible unmasked variants:

(é(x) = O(z))o = a” + ' + 2™

(Ex) —1L(x))o=14z+2? + 23+ 2 +2° + 28 + 2% 4 2% + 211 4+ 212 4 213

(é(x) —0(z))1 =14z + 22 —i—x +at 425 a2t 2% 4 210 42t 4212 4 g

(é(x) = L(@)h =2’ +2® + 2’

Step 3: Inverting the High-Memory Polynomial Multiplication

Dividing the first two outcomes of Step 2 by go(x) and the last two by gi(x):

(do(z))o = (2" + 2% + ') /(1 + 27) = 2® + 2”7 remainder: 23

(di(z)o=Q+z+2>+23 +at +2° + 25+ 28 + 2% + 2 + 22 +213) /(1 +27)
=24+ 22+ 2* +2° + 2% remainder: 1+ 23

(do(x))1 = (1+ 2 +a2+a3+ 2t + 2%+ 2%+ 2° + 210 + 211 4 212 4 214y /07
=22+ 22+ 2 +2° +27 remainder: 1 4+ z + 2% + 2® + 2t + 2° + 2

(di(z))1 = (2" + 2% +2'3) /2" =1+ 2 +2° remainder: 0.

Step 4: Quotient Interleaving
The four interleaved values of d; are given by:

(do)o A (do)1 =[0000011101010011
(do)o A (d1)1=[0101001000000110
([
[

di)oA(dg)y =[0010110111111001
d3:(d1)0/\(d1)1: 0111100010101100

Step 5: Parallel Viterbi Decoding

Decoding the four interleaved quotients in parallel yields the most likely code-
word d according to Equation (29), with the corresponding transformed plaintext
m,S. In this example, the CC has a free distance of d¢ree = 5, which implies
that the code can reliably correct up to two errors within a sliding window of
six bits. If three or more errors occur within this window, the parallel Viterbi
decoding step is likely to fail in recovering the correct plaintext. Nevertheless,
such decoding failure, can be detected by the CRC. The trellis for the case
ds = (di)o A (d1); is depicted in Fig. 2. The highlighted path in the trellis cor-
responding to the least-weight path has an accumulated distance of 2 from ds,
which corresponds to the following information word: 11011000. For all other
Viterbi decoders, the most likely path through their respective trellises maintain
a minimum distance greater than two from the corresponding d;. Note that for
a CC with memory length 2, two zeroes are appended to the end of the infor-
mation sequence to force the trellis to converge to a single termination state.
By discarding these appended zeroes, the most likely transformed plaintext is
obtained as:

]
]
]
|

mS = 110110

High-Memory Masked Convolutional Codes for Post-Quantum Cryptography 15

Step 6: Plaintext Recovery
Using the inverse matrix S—1:

101110
011011
001000
001110
000010
001011

we can recover the original plaintext m as follows:
m =mSS~! = [110110]S~! = [111001]

Thus, the recovered plaintext is 111001, confirming correctness. In this exam-
ple, the recovery of m required only a single iteration. In the general case, the
remainder resulting from the division of 7,(z) by r(z) must be computed. If
this remainder in non-zero, the selected codeword d should be discarded. The
process must then be repeated iteratively with the next most likely candidate
until a valid d; is identified or all possible candidates have been exhausted.

Info bit=0
Info bit=1

Fig. 2. Trellis and least-weight path corresponding to d3 = [0111100010101100].

8 Cryptanalysis Resistance and Performance

In code-based cryptography, the complexity of cryptanalysis is primarily de-
termined by the Information-Set Decoding (ISD) algorithm, which targets the
problem of decoding random linear block codes in the presence of errors. This
task is considered computationally hard for large code dimensions and high error
weights. However, if the public code deviates from a random code due to hid-
den structures, ISD may not reflect the true attack complexity. The underlying

16 Meir Ariel

mathematical problem is the syndrome decoding problem. In our context, the
finite-dimensional matrix G, which serves as the generator matrix for the MCC
(allowing it to be treated as a linear block code), has an associated parity-check
matrix H satisfying:

GH" =0 (36)

Given a syndrome s, and assuming that exactly ¢ errors have occurred, the
challenge is to find an error vector e such that

He' =5 and wt(e) =t (37)

The cryptanalysis complexity is estimated using the best-known ISD algorithms
(e.g., Prange, Lee-Brickell, BJMM) [6-8], which assess security as bit operations,
often ignoring memory usage or parallelization. These estimates assume a fixed
weight wt(e). However, in our method, the exact error count is unknown—only
the error probability e is known—introducing additional complexity compared to
other code-based schemes. While structured error patterns may affect complex-
ity, the MCC’s error vector e is truly random and, by definition, unstructured. In
the context of quantum computing, ISD complexity is typically estimated based
on classical assumptions. While quantum algorithms like Grover’s [9] can offer
quadratic speedup, no exponential ISD improvement is known. Therefore, ISD-
based complexity assessments in code-based cryptography assume ISD remains
the most efficient attack. To compare MCC complexity with other code-based
methods, we use the measure from [9]. For a classical computer attacking an
(N, K,t) code, the ISD complexity, denoted Crsp, is proportional to the num-
ber of iterations executed by the ISD algorithm. In our notation, we have

Crap o —)__ (38)
0.29

where each quantum iteration involves a function evaluation requiring O(N?)
qubit operations.

To compare MCC decoding complexity with the most efficient Goppa-code
variant, specifically the (4096, 3556, 45) code with similar key lengths, we observe
that MCC offers an additional layer of security. In MCC, only the probability e
is known, not the actual number of errors ¢. Additionally, polynomial division in
the decoder introduces extra, unpredictable errors, further obscuring the error
count. As a result, while ISD assumes that ¢ is fixed, decoding in MCC requires
iterating over all possible values of ¢. For comparison purposes, however, we
assume that in MCC, t is fixed at eN + «, where « represents the additional

High-Memory Masked Convolutional Codes for Post-Quantum Cryptography 17

errors introduced by the polynomial division. Substituting the parameters of the
Goppa (4096, 3556, 45) code we obtain:

(s350)

Crsp(Goppa) ~ ~ 7.06 x 10%° (40)

For an MCC with a comparable key length, we can choose parameters N = 5600
and K = 2400. For instance, by selecting polynomials po(z) and p;(z) of degree
14 and, go(x) and g1 () of degree 386 (resulting in a rate 1/2 MCC with memory
length 400 and 2400 input bits) the corresponding 5600-bit codeword achieves a
public key length comparable to Goppa code, approximately 2 megabytes in both
cases. For these parameters, selecting go(z) = 1% and q;(z) = 1 + 2°% with
e = 0.02 yield an error probability at the Viterbi decoder input of GNJ\;'"‘ ~ 0.07.
This corresponds to approximately 392 errors on average in a 5600-bit ciphertext.
This error rate comfortably falls within the error-correction capability of a rate
1/2 CC with memory length 14, making decoding failure highly unlikely. Under
these assumptions, the ISD complexity of the MCC is:

(5600)
C1sp(MCC) ~ ——2800____ ~ 375 x 1010 (41)

029 (™)

This result reflects a security improvement by a factor of approximately 0.53 x
1059 ~ 2198 compared to the classic McEliece scheme in Equation (40). For quan-
tum ISD (QISD), the improvement is roughly 2%°, consistent with the square-root
speedup provided by Grover’s algorithm. Increasing the public key length fur-
ther enhances resistance to cryptanalysis, as indicated by Equation (38). Given
that the primary role of the MCC cryptosystem is to securely distribute the key
(with subsequent reuse), a key length of several megabytes is not considered a
significant limitation.

To estimate the probability of a decoding failure (and thus the need for re-
transmission), consider the following example. Suppose we employ a rate 1/4 CC
with memory length 10, defined by Gp(x) = [2327,2313,2671,3175], where the
polynomials are expressed in octal form. This code offers strong error correction
capabilities, featuring a free distance dfree = 29. Consequently, the Hamming
distance between any two paths through the 1024-state trellis that diverge from
the same state and merge after 11 segments (i.e., over 44 bits) is at least 29.
This implies that the CC can correct up to 14 errors in a 44-bit window. Next
consider the following high-memory sparse polynomials

GQ(LL') _ [1 4 £C495 4 ZCQQO, {,13247, {L‘743, 1+ x990]

For an error rate e = 0.04, simulations yield

a _0.18+0+0+0.13
- 4

~ 0.0775

=

Thus o
e+ N 0.04 +0.0775 = 0.1175

18 Meir Ariel

The Viterbi decoder fails if more than 14 errors occur in a 44-bit window. At an
effective error rate of 0.1175, the probability of such an event is approximately
8.998 x 10~°. This extremely low failure probability ensures reliable decryption
for large ciphertexts. For example, over 500 consecutive windows, the probability
of successful decryption is (1—8.998 x 1075)5%0 ~ 0.956. This result demonstrates
that the MCC cryptosystem maintains a high probability of successful decryp-
tion, even for ciphertexts spanning tens of thousands of bits.

Finally, we discuss the computational complexity of decryption. The domi-
nant factor in the decryption complexity of the MCC cryptosystem arises from
the Viterbi decoding step. While other operations—such as polynomial divi-
sions, unmasking, interleaving, and deinterleaving—are performed over the en-
tire received ciphertext, their computational impact is negligible compared to
the per-bit complexity of the Viterbi algorithm. To quantify this complexity,
we evaluate the number of Add-Compare-Select (ACS) modules employed per
decrypted plaintext bit. These ACS modules are efficiently implemented in both
software and hardware, making them suitable for practical deployment. Suppose
the MCC employs a CC with memory p and a set £ consisting of [random
masking vectors. In this case the decryption process requires 2! parallel Viterbi
decoders, each utilizing 27 ACS modules per bit. Consequently, the total number
of ACS modules per plaintext bit is 2/+?. This complexity measure scales linearly
with the plaintext length K ensuring predictable and manageable performance
as the data size grows. For example, using the rate 1/4 CC with memory p = 10
and [= 5, the total ACS operations per bit become 277 = 215 = 32, 768, a com-
putational load well within the capabilities of commercial processors, including
those found in modern mobile devices.

9 Conclusion

This work presents a novel post-quantum encryption scheme based on high-
memory masked convolutional codes, addressing the limitations of traditional
block code-based methods. Security is reinforced through semi-invertible trans-
formations that generate fully dense, random-like matrices, mitigating vulnera-
bilities related to low-weight or structured generator matrices. The scheme fur-
ther strengthens security by incorporating two layers of error injection: delib-
erate random error insertion at high error rates and additional random errors
inherently introduced by polynomial division. The dual-layered error strategy
significantly complicates cryptanalysis, even in scenarios where an adversary has
complete knowledge of the convolutional code. The interplay between masking
and polynomial division ensures that decrypting the ciphertext remains com-
putationally formidable. Beyond its security enhancements, the scheme offers
improved scalability, flexibility, and efficient hardware implementation via the
Viterbi algorithm. These characteristics make the proposed method a strong
candidate for both classical and post-quantum cryptographic applications.

High-Memory Masked Convolutional Codes for Post-Quantum Cryptography 19

References

1. McEliece, R.J.: A Public-Key Cryptosystem Based on Algebraic Coding Theory.
DSN Progress Report (1978)

2. Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the McEliece cryp-
tosystem. In: Post-Quantum Cryptography, pp. 31-46 (2008)

3. Misoczki, R., Tillich, J.-P., Sendrier, N., Barreto, P.S.L.M.: MDPC-McEliece: New
McEliece variants from Moderate Density Parity-Check codes. IEEE Transactions
on Information Theory (2013)

4. NIST Post-Quantum Cryptography Standardization (2023). https://csrc.nist.
gov

5. Baldi, M., Chiaraluce, F., Garello, R., Mininni, F.: Quasi-cyclic low-density parity-
check codes in the McEliece cryptosystem. In: IEEE International Conference on
Communications (ICC), Glasgow, Scotland, pp. 951-956. IEEE (2007). https://
doi.org/10.1109/ICC.2007.161

6. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes in
27/2° In: Advances in Cryptology - EUROCRYPT (2012)

7. Prange, E.: The use of information sets in decoding cyclic codes. IRE Transactions
on Information Theory, 8(5), 5-9 (1962)

8. Lee, P.J., Brickell, E.F.: An observation on the security of McEliece’s public-key
cryptosystem. In: Advances in Cryptology - EUROCRYPT (1988)

9. Bernstein, D.J.: Grover vs. McEliece. In: Sendrier, N. (ed.) Post-Quantum Cryptog-
raphy, PQCrypto 2010. Lecture Notes in Computer Science, vol. 6061, pp. 73-80.
Springer, Heidelberg (2010). https://cr.yp.to/papers.html#grovercode

